If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4.9x^2+18.1x=0
a = 4.9; b = 18.1; c = 0;
Δ = b2-4ac
Δ = 18.12-4·4.9·0
Δ = 327.61
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(18.1)-\sqrt{327.61}}{2*4.9}=\frac{-18.1-\sqrt{327.61}}{9.8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(18.1)+\sqrt{327.61}}{2*4.9}=\frac{-18.1+\sqrt{327.61}}{9.8} $
| 9^(3x^2)=80 | | D=9/7(m-29) | | (x/2)-4=-10 | | 2x+15+x+15+3x-20=360 | | 5y-84y=9y+10 | | 8(m+2)-4+3m=3(4m+8)-m | | 0.25=x-40/8 | | 135=m | | 4x+30+6x-20+5x+5=180 | | 2/3*6x=2x+30 | | X+(×+30)+(x+55)=2245 | | 4+7x=5x-4 | | 1/3+a=1/5 | | X×(x+30)+(x+55)=2245 | | 1219.16+.41x=x | | 4(x+22)=6x | | -8y+4(y+3)=4 | | 37=-3+5(x+6)= | | 15=11y-6y | | x-53+53-x=2330 | | 2.7b+.4=2.8-1.2b | | (x-20)+(x+10)+(x)=180 | | 8a-3=5a | | 7s+36=239 | | 5t+2=9t-10 | | -8(-3x=4x+5) | | X+2x-15+X+2x-15=360 | | 2v+8=-7 | | 3*(x-6)=2*x-7) | | 3·(x−6)=2·(x−7)3*(x-6)=2*x-7) | | x/6-1.5=3 | | (x+4/6)=1-(x+7/5) |